20250220-代码笔记01-class CVRPEnv

news/2025/2/23 6:16:17

文章目录

  • 前言
  • 一、def __init__(self, **env_params):
    • 函数功能
    • 函数代码
  • 二、use_saved_problems(self, filename, device)
    • 函数功能
    • 函数代码
  • 三、load_problems(self, batch_size, aug_factor=1)
    • 函数功能
    • 函数代码
    • use_saved_problems 与 load_problems 之间的关系
  • 四、reset(self)
    • 函数功能
    • 函数代码
  • 五、pre_step(self)
    • 函数功能
    • 函数代码
  • 六、step(self, selected)
    • 函数功能
    • 函数代码
  • 七、_get_travel_distance(self)
    • 函数功能
    • 问题
      • 什么是“滚动”?
    • 函数代码
  • 附件
    • 代码(全):CVRPEnv.py
    • 代码:一、def __init__(self, **env_params)


前言

对CVRPEnv.py中的类(class CVRPEnv)代码的学习。
代码地址如下:

/home/tang/RL_exa/NCO_code-main/single_objective/LCH-Regret/Regret-POMO/CVRP/POMO/CVRPEnv.py


一、def init(self, **env_params):

函数功能

这段代码是CVRPEnv类的初始化方法,主要用于初始化与**车辆路径问题(CVRP)**环境相关的各个参数和变量。

参数思维导图链接
在这里插入图片描述

函数代码

    def __init__(self, **env_params):

        # Const @INIT
        ####################################
        self.env_params = env_params
        self.problem_size = env_params['problem_size']  #提取问题规模
        self.pomo_size = env_params['pomo_size']        #POMO 智能体数量

        self.FLAG__use_saved_problems = False           #设置是否使用保存的问题实例
        self.saved_depot_xy = None                      #配送中心(depot)的坐标
        self.saved_node_xy = None                       #节点(客户或城市)的坐标
        self.saved_node_demand = None                   #保存节点的需求量
        self.saved_index = None                         #保存节点的索引

        # Const @Load_Problem
        ####################################
        self.batch_size = None  
        self.BATCH_IDX = None   
        self.POMO_IDX = None    
        # IDX.shape: (batch, pomo)
        self.depot_node_xy = None
        # shape: (batch, problem+1, 2)
        self.depot_node_demand = None
        # shape: (batch, problem+1)

        # Dynamic-1
        ####################################
        self.selected_count = None
        self.current_node = None
        # shape: (batch, pomo)
        self.selected_node_list = None
        # shape: (batch, pomo, 0~)

        # Dynamic-2
        ####################################
        self.at_the_depot = None
        # shape: (batch, pomo)
        self.load = None
        # shape: (batch, pomo)
        self.visited_ninf_flag = None
        # shape: (batch, pomo, problem+1)
        self.ninf_mask = None
        # shape: (batch, pomo, problem+1)
        self.finished = None
        # shape: (batch, pomo)

        # states to return
        ####################################
        self.reset_state = Reset_State()
        self.step_state = Step_State()

        # regret
        ####################################
        self.mode = None
        self.last_current_node = None
        self.last_load = None
        self.regret_count = None

        self.regret_mask_matrix = None
        self.add_mask_matrix = None

        self.time_step=0 


二、use_saved_problems(self, filename, device)

函数功能

函数的功能是加载预先保存的问题实例,并将这些问题实例的数据保存到类的属性中。
它会从指定的文件中读取问题数据,包括配送中心的位置(depot_xy)节点的位置(node_xy)节点的需求量(node_demand),然后将这些数据存储在类的属性中,以供后续使用。

函数思维导图链接
在这里插入图片描述

函数代码

 def use_saved_problems(self, filename, device):                
        self.FLAG__use_saved_problems = True 

        loaded_dict = torch.load(filename, map_location=device) #加载保存的问题实例
        self.saved_depot_xy = loaded_dict['depot_xy']           #解析加载的数据
        self.saved_node_xy = loaded_dict['node_xy']             #
        self.saved_node_demand = loaded_dict['node_demand']
        self.saved_index = 0


三、load_problems(self, batch_size, aug_factor=1)

函数功能

该函数用于加载**车辆路径问题(CVRP)**实例,包括:

  1. 动态生成问题实例 或 从预加载数据中提取问题
  2. 数据增强
  3. 初始化索引和状态变量
  4. 存储到环境变量

工作方式

  • 如果 self.FLAG__use_saved_problemsTrue,则从通过 use_saved_problems 加载的预先保存的问题实例中提取数据(self.saved_depot_xy, self.saved_node_xy, self.saved_node_demand),并更新索引 self.saved_index
  • 如果 self.FLAG__use_saved_problemsFalse,则动态生成问题实例。使用 get_random_problems() 方法生成指定 batch_sizeproblem_size 的问题数据。
  • load_problems 还支持数据增强,通过指定 aug_factor 来增强生成的数据(目前仅支持 aug_factor=8),扩展批次数量并改变问题实例的坐标和需求。

函数功能思维导图链接
在这里插入图片描述

函数代码

 def load_problems(self, batch_size, aug_factor=1):
        self.batch_size = batch_size

        #加载问题实例
        if not self.FLAG__use_saved_problems:
            #动态生成模式
            depot_xy, node_xy, node_demand = get_random_problems(batch_size, self.problem_size)
        else:
            #预加载模式,从保存的实例数据中提取问题
            depot_xy = self.saved_depot_xy[self.saved_index:self.saved_index+batch_size]
            node_xy = self.saved_node_xy[self.saved_index:self.saved_index+batch_size]
            node_demand = self.saved_node_demand[self.saved_index:self.saved_index+batch_size]
            self.saved_index += batch_size

        #数据增强
        if aug_factor > 1:
            if aug_factor == 8:
                self.batch_size = self.batch_size * 8
                depot_xy = augment_xy_data_by_8_fold(depot_xy)
                node_xy = augment_xy_data_by_8_fold(node_xy)
                node_demand = node_demand.repeat(8, 1)
            else:
                raise NotImplementedError
            
        #合并配送中心和节点数据
        self.depot_node_xy = torch.cat((depot_xy, node_xy), dim=1)
        # shape: (batch, problem+1, 2)
        depot_demand = torch.zeros(size=(self.batch_size, 1))
        # shape: (batch, 1)
        self.depot_node_demand = torch.cat((depot_demand, node_demand), dim=1)
        # shape: (batch, problem+1)

        #初始化批量索引和 POMO 索引
        self.BATCH_IDX = torch.arange(self.batch_size)[:, None].expand(self.batch_size, self.pomo_size)
        self.POMO_IDX = torch.arange(self.pomo_size)[None, :].expand(self.batch_size, self.pomo_size)

        #更新重置状态和步骤状态
        self.reset_state.depot_xy = depot_xy
        self.reset_state.node_xy = node_xy
        self.reset_state.node_demand = node_demand

        self.step_state.BATCH_IDX = self.BATCH_IDX
        self.step_state.POMO_IDX = self.POMO_IDX

use_saved_problems 与 load_problems 之间的关系

  • use_saved_problems 作为数据加载的前置条件

    • use_saved_problems 主要负责加载已经保存好的问题实例文件(比如一个torch.save()保存的文件),并将这些数据存储到环境中的特定变量中(例如 self.saved_depot_xyself.saved_node_xy)。

    • 一旦执行了use_saved_problems,它设置了 self.FLAG__use_saved_problems = True,这意味着在后续的操作中,环境会从保存的数据中加载问题实例,而不是重新生成问题。

    • 但是use_saved_problems 本身并不负责加载具体的问题实例数据它只是为后续的加载操作(如 load_problems)提供了指示标志

  • load_problems使用 use_saved_problems 加载的数据:

    • load_problems执行数据加载和问题生成的主函数,它根据 self.FLAG__use_saved_problems 的值,决定是从保存的数据中提取问题实例,还是生成新的随机问题实例。
    • self.FLAG__use_saved_problems = True 时,load_problems 会从 self.saved_depot_xyself.saved_node_xyself.saved_node_demand 等变量中读取数据,并根据需要为每个批次的问题实例做进一步处理(如索引的更新、数据增强等)。
    • 如果 self.FLAG__use_saved_problems = False,则 load_problems 会使用 get_random_problems() 来动态生成问题数据。

四、reset(self)

函数功能

reset 函数的主要目的是将环境的状态变量重置为初始值,通常在每个新的训练回合或实验开始时调用。该函数确保环境处于一个已知的初始状态,以便智能体能够从一个干净的状态开始进行决策和学习。

函数参数思维导图
在这里插入图片描述

函数代码

 def reset(self):
        #重置选择计数
        self.selected_count = torch.zeros((self.batch_size, self.pomo_size), dtype=torch.long)

        #重置当前节点
        self.current_node = None
        # shape: (batch, pomo)  

        #重置已选择的节点列表
        self.selected_node_list = torch.zeros((self.batch_size, self.pomo_size, 0), dtype=torch.long)
        # shape: (batch, pomo, 0~)

        #初始化是否在配送中心
        self.at_the_depot = torch.ones(size=(self.batch_size, self.pomo_size), dtype=torch.bool)
        # shape: (batch, pomo)

        # 初始化负载
        self.load = torch.ones(size=(self.batch_size, self.pomo_size))
        # shape: (batch, pomo)

        #初始化访问掩码
        self.visited_ninf_flag = torch.zeros(size=(self.batch_size, self.pomo_size, self.problem_size+2))
        self.visited_ninf_flag[:, :, self.problem_size+1] = float('-inf')
        # shape: (batch, pomo, problem+1)

        #初始化负无穷掩码
        self.ninf_mask = torch.zeros(size=(self.batch_size, self.pomo_size, self.problem_size+2))
        self.ninf_mask[:, :, self.problem_size+1] = float('-inf')
        # shape: (batch, pomo, problem+1)

        #初始化完成状态
        self.finished = torch.zeros(size=(self.batch_size, self.pomo_size), dtype=torch.bool)
        # shape: (batch, pomo)

        #初始化其他状态变量
        self.regret_count = torch.zeros((self.batch_size, self.pomo_size))
        self.mode = torch.full((self.batch_size, self.pomo_size), 0)
        self.last_current_node = None
        self.last_load = None
        self.time_step=0

        reward = None
        done = False
        return self.reset_state, reward, done


五、pre_step(self)

函数功能

pre_step 函数是环境中的一个预处理步骤,用于在每个时间步之前设置必要的状态信息。
通常,在强化学习环境中,每个时间步会根据当前状态和动作进行更新,pre_step 函数则为每个时间步提供所需的状态,供后续的决策和学习过程使用。

函数功能思维导图
在这里插入图片描述

函数代码

    def pre_step(self):
        #重置 selected_count
        self.step_state.selected_count = 0
        #复制当前负载
        self.step_state.load = self.load
        #设置当前节点
        self.step_state.current_node = self.current_node
        #更新掩码状态
        self.step_state.ninf_mask = self.ninf_mask
        
        #返回步骤状态、奖励和完成标志
        reward = None
        done = False
        return self.step_state, reward, done


六、step(self, selected)

函数功能

这个函数的主要功能是在每个时间步(step)中更新智能体的状态,执行任务、处理负载、选择节点等,最终返回当前的状态、奖励和是否完成任务的标志。

函数功能与参数的思维导图链接

在这里插入图片描述

函数代码

def step(self, selected):
        # selected.shape: (batch, pomo)

        #时间步数控制
        if self.time_step<4:

            # 控制时间步的递增
            self.time_step=self.time_step+1
            self.selectex_count = self.selected_count+1

            #判断是否在配送中心
            self.at_the_depot = (selected == 0)

            #特定时间步的操作
            if self.time_step==3:
                self.last_current_node = self.current_node.clone()
                self.last_load = self.load.clone()
            if self.time_step == 4:
                self.last_current_node = self.current_node.clone()
                self.last_load = self.load.clone()
                self.visited_ninf_flag[:, :, self.problem_size+1][(~self.at_the_depot)&(self.last_current_node!=0)] = 0
            
            #更新当前节点和已选择节点列表
            self.current_node = selected
            self.selected_node_list = torch.cat((self.selected_node_list, self.current_node[:, :, None]), dim=2)

            #更新需求和负载
            demand_list = self.depot_node_demand[:, None, :].expand(self.batch_size, self.pomo_size, -1)
            gathering_index = selected[:, :, None]
            selected_demand = demand_list.gather(dim=2, index=gathering_index).squeeze(dim=2)
            self.load -= selected_demand
            self.load[self.at_the_depot] = 1  # refill loaded at the depot

            #更新访问标记(防止重复选择已访问的节点)
            self.visited_ninf_flag[self.BATCH_IDX, self.POMO_IDX, selected] = float('-inf')
            self.visited_ninf_flag[:, :, 0][~self.at_the_depot] = 0  # depot is considered unvisited, unless you are AT the depot

            #更新负无穷掩码(屏蔽需求量超过当前负载的节点)
            self.ninf_mask = self.visited_ninf_flag.clone()
            round_error_epsilon = 0.00001
            demand_too_large = self.load[:, :, None] + round_error_epsilon < demand_list
            _2=torch.full((demand_too_large.shape[0],demand_too_large.shape[1],1),False)
            demand_too_large = torch.cat((demand_too_large, _2), dim=2)
            self.ninf_mask[demand_too_large] = float('-inf')

            #更新步骤状态,将更新后的状态同步到 self.step_state
            self.step_state.selected_count = self.time_step
            self.step_state.load = self.load
            self.step_state.current_node = self.current_node
            self.step_state.ninf_mask = self.ninf_mask


        #时间步大于等于 4 的复杂操作
        else:
            #动作模式分类
            action0_bool_index = ((self.mode == 0) & (selected != self.problem_size + 1))
            action1_bool_index = ((self.mode == 0) & (selected == self.problem_size + 1))  # regret
            action2_bool_index = self.mode == 1
            action3_bool_index = self.mode == 2
            
            action1_index = torch.nonzero(action1_bool_index)
            action2_index = torch.nonzero(action2_bool_index)

            action4_index = torch.nonzero((action3_bool_index & (self.current_node != 0)))

            #更新选择计数
            self.selected_count = self.selected_count+1
            #后悔模式
            self.selected_count[action1_bool_index] = self.selected_count[action1_bool_index] - 2

            #节点更新
            self.last_is_depot = (self.last_current_node == 0)

            _ = self.last_current_node[action1_index[:, 0], action1_index[:, 1]].clone()
            temp_last_current_node_action2 = self.last_current_node[action2_index[:, 0], action2_index[:, 1]].clone()
            self.last_current_node = self.current_node.clone()
            self.current_node = selected.clone()
            self.current_node[action1_index[:, 0], action1_index[:, 1]] = _.clone()

            #更新已选择节点列表
            self.selected_node_list = torch.cat((self.selected_node_list, selected[:, :, None]), dim=2)

            #更新负载
            self.at_the_depot = (selected == 0)
            demand_list = self.depot_node_demand[:, None, :].expand(self.batch_size, self.pomo_size, -1)
            # shape: (batch, pomo, problem+1)
            _3 = torch.full((demand_list.shape[0], demand_list.shape[1], 1), 0)
            #扩展需求列表 demand_list 
            demand_list = torch.cat((demand_list, _3), dim=2)
            gathering_index = selected[:, :, None]
            # shape: (batch, pomo, 1)
            selected_demand = demand_list.gather(dim=2, index=gathering_index).squeeze(dim=2)
            _1 = self.last_load[action1_index[:, 0], action1_index[:, 1]].clone()
            self.last_load= self.load.clone()
            # shape: (batch, pomo)
            self.load -= selected_demand
            self.load[action1_index[:, 0], action1_index[:, 1]] = _1.clone()
            self.load[self.at_the_depot] = 1  # refill loaded at the depot

            #更新访问标记
            self.visited_ninf_flag[:, :, self.problem_size+1][self.last_is_depot] = 0
            self.visited_ninf_flag[self.BATCH_IDX, self.POMO_IDX, selected] = float('-inf')
            self.visited_ninf_flag[action2_index[:, 0], action2_index[:, 1], temp_last_current_node_action2] = float(0)
            self.visited_ninf_flag[action4_index[:, 0], action4_index[:, 1], self.problem_size + 1] = float(0)
            self.visited_ninf_flag[:, :, self.problem_size+1][self.at_the_depot] = float('-inf')
            self.visited_ninf_flag[:, :, 0][~self.at_the_depot] = 0


            # 更新负无穷掩码
            self.ninf_mask = self.visited_ninf_flag.clone()
            round_error_epsilon = 0.00001
            demand_too_large = self.load[:, :, None] + round_error_epsilon < demand_list
            # shape: (batch, pomo, problem+1)
            self.ninf_mask[demand_too_large] = float('-inf')

            # 更新完成状态
            # 检查哪些智能体已经完成所有节点的访问。
            # 更新完成标记 self.finished。
            newly_finished = (self.visited_ninf_flag == float('-inf'))[:,:,:self.problem_size+1].all(dim=2)
            # shape: (batch, pomo)
            self.finished = self.finished + newly_finished
            # shape: (batch, pomo)

            #更新模式
            self.mode[action1_bool_index] = 1
            self.mode[action2_bool_index] = 2
            self.mode[action3_bool_index] = 0
            self.mode[self.finished] = 4

            # 更新完成后的掩码调整
            self.ninf_mask[:, :, 0][self.finished] = 0
            self.ninf_mask[:, :, self.problem_size+1][self.finished] = float('-inf')

            # 更新步骤状态
            self.step_state.selected_count = self.time_step
            self.step_state.load = self.load
            self.step_state.current_node = self.current_node
            self.step_state.ninf_mask = self.ninf_mask



        # returning values
        done = self.finished.all()
        if done:
            reward = -self._get_travel_distance()  # note the minus sign!
        else:
            reward = None

        return self.step_state, reward, done


七、_get_travel_distance(self)

函数功能

_get_travel_distance 函数的主要功能是计算每个智能体(POMO智能体)在每个时间步所选择的节点之间的旅行距离。

函数参数和流程图链接

在这里插入图片描述

问题

什么是“滚动”?

“滚动”是对张量或数组进行操作的一种方式,它通过沿特定维度(通常是时间维度)移动元素,从而生成一个新的数组或张量。

例子
设我们有一个一维张量表示时间步的节点选择情况:

tensor = torch.tensor([1, 2, 3, 4, 5])

如果我们对这个张量进行滚动操作,沿着时间维度向右滚动1步:

rolled_tensor = tensor.roll(dims=0, shifts=1)

这时,rolled_tensor 将变成:

tensor([5, 1, 2, 3, 4])

函数代码

  def _get_travel_distance(self):

        m1 = (self.selected_node_list==self.problem_size+1)
        m2 = (m1.roll(dims=2, shifts=-1) | m1)
        m3 = m1.roll(dims=2, shifts=1)
        m4 = ~(m2|m3)

        selected_node_list_right = self.selected_node_list.roll(dims=2, shifts=1)
        selected_node_list_right2 = self.selected_node_list.roll(dims=2, shifts=3)

        self.regret_mask_matrix = m1
        self.add_mask_matrix = (~m2)

        travel_distances = torch.zeros((self.batch_size, self.pomo_size))

        for t in range(self.selected_node_list.shape[2]):
            add1_index = (m4[:,:,t].unsqueeze(2)).nonzero()
            add3_index = (m3[:,:,t].unsqueeze(2)).nonzero()

            travel_distances[add1_index[:,0],add1_index[:,1]] = travel_distances[add1_index[:,0],add1_index[:,1]].clone()+((self.depot_node_xy[add1_index[:,0],self.selected_node_list[add1_index[:,0],add1_index[:,1],t],:]-self.depot_node_xy[add1_index[:,0],selected_node_list_right[add1_index[:,0],add1_index[:,1],t],:])**2).sum(1).sqrt()

            travel_distances[add3_index[:,0],add3_index[:,1]] = travel_distances[add3_index[:,0],add3_index[:,1]].clone()+((self.depot_node_xy[add3_index[:,0],self.selected_node_list[add3_index[:,0],add3_index[:,1],t],:]-self.depot_node_xy[add3_index[:,0],selected_node_list_right2[add3_index[:,0],add3_index[:,1],t],:])**2).sum(1).sqrt()



        return travel_distances



附件

代码(全):CVRPEnv.py

返回:前言

/home/tang/RL_exa/NCO_code-main/single_objective/LCH-Regret/Regret-POMO/CVRP/POMO/CVRPEnv.py


from dataclasses import dataclass
import torch

from CVRProblemDef import get_random_problems, augment_xy_data_by_8_fold


@dataclass
class Reset_State:
    depot_xy: torch.Tensor = None
    # shape: (batch, 1, 2)
    node_xy: torch.Tensor = None
    # shape: (batch, problem, 2)
    node_demand: torch.Tensor = None
    # shape: (batch, problem)


@dataclass
class Step_State:
    BATCH_IDX: torch.Tensor = None      #表示批次的索引
    POMO_IDX: torch.Tensor = None       #表示 POMO 算法中的多智能体索引
    # shape: (batch, pomo)
    selected_count: int = None          #表示当前已经选中的节点数量
    load: torch.Tensor = None           #表示当前负载状态
    # shape: (batch, pomo)
    current_node: torch.Tensor = None   #表示当前正在访问的节点编号
    # shape: (batch, pomo)
    ninf_mask: torch.Tensor = None      #表示负无穷掩码
    # shape: (batch, pomo, problem+1)


class CVRPEnv:               
    def __init__(self, **env_params):

        # Const @INIT
        ####################################
        self.env_params = env_params
        self.problem_size = env_params['problem_size']  #提取问题规模
        self.pomo_size = env_params['pomo_size']        #POMO 智能体数量

        self.FLAG__use_saved_problems = False           #设置是否使用保存的问题实例
        self.saved_depot_xy = None                      #配送中心(depot)的坐标
        self.saved_node_xy = None                       #节点(客户或城市)的坐标
        self.saved_node_demand = None                   #保存节点的需求量
        self.saved_index = None                         #保存节点的索引

        # Const @Load_Problem
        ####################################
        self.batch_size = None  
        self.BATCH_IDX = None   
        self.POMO_IDX = None    
        # IDX.shape: (batch, pomo)
        self.depot_node_xy = None
        # shape: (batch, problem+1, 2)
        self.depot_node_demand = None
        # shape: (batch, problem+1)

        # Dynamic-1
        ####################################
        self.selected_count = None
        self.current_node = None
        # shape: (batch, pomo)
        self.selected_node_list = None
        # shape: (batch, pomo, 0~)

        # Dynamic-2
        ####################################
        self.at_the_depot = None
        # shape: (batch, pomo)
        self.load = None
        # shape: (batch, pomo)
        self.visited_ninf_flag = None
        # shape: (batch, pomo, problem+1)
        self.ninf_mask = None
        # shape: (batch, pomo, problem+1)
        self.finished = None
        # shape: (batch, pomo)

        # states to return
        ####################################
        self.reset_state = Reset_State()
        self.step_state = Step_State()

        # regret
        ####################################
        self.mode = None
        self.last_current_node = None
        self.last_load = None
        self.regret_count = None

        self.regret_mask_matrix = None
        self.add_mask_matrix = None

        self.time_step=0

    #加载保存的问题实例数据 
    def use_saved_problems(self, filename, device):                
        self.FLAG__use_saved_problems = True 

        loaded_dict = torch.load(filename, map_location=device) #加载保存的问题实例
        self.saved_depot_xy = loaded_dict['depot_xy']           #解析加载的数据
        self.saved_node_xy = loaded_dict['node_xy']             #
        self.saved_node_demand = loaded_dict['node_demand']
        self.saved_index = 0

    def load_problems(self, batch_size, aug_factor=1):
        self.batch_size = batch_size

        #加载问题实例
        if not self.FLAG__use_saved_problems:
            #动态生成模式
            depot_xy, node_xy, node_demand = get_random_problems(batch_size, self.problem_size)
        else:
            #预加载模式,从保存的实例数据中提取问题
            depot_xy = self.saved_depot_xy[self.saved_index:self.saved_index+batch_size]
            node_xy = self.saved_node_xy[self.saved_index:self.saved_index+batch_size]
            node_demand = self.saved_node_demand[self.saved_index:self.saved_index+batch_size]
            self.saved_index += batch_size

        #数据增强
        if aug_factor > 1:
            if aug_factor == 8:
                self.batch_size = self.batch_size * 8
                depot_xy = augment_xy_data_by_8_fold(depot_xy)
                node_xy = augment_xy_data_by_8_fold(node_xy)
                node_demand = node_demand.repeat(8, 1)
            else:
                raise NotImplementedError
            
        #合并配送中心和节点数据
        self.depot_node_xy = torch.cat((depot_xy, node_xy), dim=1)
        # shape: (batch, problem+1, 2)
        depot_demand = torch.zeros(size=(self.batch_size, 1))
        # shape: (batch, 1)
        self.depot_node_demand = torch.cat((depot_demand, node_demand), dim=1)
        # shape: (batch, problem+1)

        #初始化批量索引和 POMO 索引
        self.BATCH_IDX = torch.arange(self.batch_size)[:, None].expand(self.batch_size, self.pomo_size)
        self.POMO_IDX = torch.arange(self.pomo_size)[None, :].expand(self.batch_size, self.pomo_size)

        #更新重置状态和步骤状态
        self.reset_state.depot_xy = depot_xy
        self.reset_state.node_xy = node_xy
        self.reset_state.node_demand = node_demand

        self.step_state.BATCH_IDX = self.BATCH_IDX
        self.step_state.POMO_IDX = self.POMO_IDX

    def reset(self):
        #重置选择计数
        self.selected_count = torch.zeros((self.batch_size, self.pomo_size), dtype=torch.long)

        #重置当前节点
        self.current_node = None
        # shape: (batch, pomo)  

        #重置已选择的节点列表
        self.selected_node_list = torch.zeros((self.batch_size, self.pomo_size, 0), dtype=torch.long)
        # shape: (batch, pomo, 0~)

        #初始化是否在配送中心
        self.at_the_depot = torch.ones(size=(self.batch_size, self.pomo_size), dtype=torch.bool)
        # shape: (batch, pomo)

        # 初始化负载
        self.load = torch.ones(size=(self.batch_size, self.pomo_size))
        # shape: (batch, pomo)

        #初始化访问掩码
        self.visited_ninf_flag = torch.zeros(size=(self.batch_size, self.pomo_size, self.problem_size+2))
        self.visited_ninf_flag[:, :, self.problem_size+1] = float('-inf')
        # shape: (batch, pomo, problem+1)

        #初始化负无穷掩码
        self.ninf_mask = torch.zeros(size=(self.batch_size, self.pomo_size, self.problem_size+2))
        self.ninf_mask[:, :, self.problem_size+1] = float('-inf')
        # shape: (batch, pomo, problem+1)

        #初始化完成状态
        self.finished = torch.zeros(size=(self.batch_size, self.pomo_size), dtype=torch.bool)
        # shape: (batch, pomo)

        #初始化其他状态变量
        self.regret_count = torch.zeros((self.batch_size, self.pomo_size))
        self.mode = torch.full((self.batch_size, self.pomo_size), 0)
        self.last_current_node = None
        self.last_load = None
        self.time_step=0

        reward = None
        done = False
        return self.reset_state, reward, done

    def pre_step(self):
        #重置 selected_count
        self.step_state.selected_count = 0
        #复制当前负载
        self.step_state.load = self.load
        #设置当前节点
        self.step_state.current_node = self.current_node
        #更新掩码状态
        self.step_state.ninf_mask = self.ninf_mask
        
        #返回步骤状态、奖励和完成标志
        reward = None
        done = False
        return self.step_state, reward, done

    def step(self, selected):
        # selected.shape: (batch, pomo)

        #时间步数控制
        if self.time_step<4:

            # 控制时间步的递增
            self.time_step=self.time_step+1
            self.selectex_count = self.selected_count+1

            #判断是否在配送中心
            self.at_the_depot = (selected == 0)

            #特定时间步的操作
            if self.time_step==3:
                self.last_current_node = self.current_node.clone()
                self.last_load = self.load.clone()
            if self.time_step == 4:
                self.last_current_node = self.current_node.clone()
                self.last_load = self.load.clone()
                self.visited_ninf_flag[:, :, self.problem_size+1][(~self.at_the_depot)&(self.last_current_node!=0)] = 0
            
            #更新当前节点和已选择节点列表
            self.current_node = selected
            self.selected_node_list = torch.cat((self.selected_node_list, self.current_node[:, :, None]), dim=2)

            #更新需求和负载
            demand_list = self.depot_node_demand[:, None, :].expand(self.batch_size, self.pomo_size, -1)
            gathering_index = selected[:, :, None]
            selected_demand = demand_list.gather(dim=2, index=gathering_index).squeeze(dim=2)
            self.load -= selected_demand
            self.load[self.at_the_depot] = 1  # refill loaded at the depot

            #更新访问标记(防止重复选择已访问的节点)
            self.visited_ninf_flag[self.BATCH_IDX, self.POMO_IDX, selected] = float('-inf')
            self.visited_ninf_flag[:, :, 0][~self.at_the_depot] = 0  # depot is considered unvisited, unless you are AT the depot

            #更新负无穷掩码(屏蔽需求量超过当前负载的节点)
            self.ninf_mask = self.visited_ninf_flag.clone()
            round_error_epsilon = 0.00001
            demand_too_large = self.load[:, :, None] + round_error_epsilon < demand_list
            _2=torch.full((demand_too_large.shape[0],demand_too_large.shape[1],1),False)
            demand_too_large = torch.cat((demand_too_large, _2), dim=2)
            self.ninf_mask[demand_too_large] = float('-inf')

            #更新步骤状态,将更新后的状态同步到 self.step_state
            self.step_state.selected_count = self.time_step
            self.step_state.load = self.load
            self.step_state.current_node = self.current_node
            self.step_state.ninf_mask = self.ninf_mask


        #时间步大于等于 4 的复杂操作
        else:
            #动作模式分类
            action0_bool_index = ((self.mode == 0) & (selected != self.problem_size + 1))
            action1_bool_index = ((self.mode == 0) & (selected == self.problem_size + 1))  # regret
            action2_bool_index = self.mode == 1
            action3_bool_index = self.mode == 2
            
            action1_index = torch.nonzero(action1_bool_index)
            action2_index = torch.nonzero(action2_bool_index)

            action4_index = torch.nonzero((action3_bool_index & (self.current_node != 0)))

            #更新选择计数
            self.selected_count = self.selected_count+1
            #后悔模式
            self.selected_count[action1_bool_index] = self.selected_count[action1_bool_index] - 2

            #节点更新
            self.last_is_depot = (self.last_current_node == 0)

            _ = self.last_current_node[action1_index[:, 0], action1_index[:, 1]].clone()
            temp_last_current_node_action2 = self.last_current_node[action2_index[:, 0], action2_index[:, 1]].clone()
            self.last_current_node = self.current_node.clone()
            self.current_node = selected.clone()
            self.current_node[action1_index[:, 0], action1_index[:, 1]] = _.clone()

            #更新已选择节点列表
            self.selected_node_list = torch.cat((self.selected_node_list, selected[:, :, None]), dim=2)

            #更新负载
            self.at_the_depot = (selected == 0)
            demand_list = self.depot_node_demand[:, None, :].expand(self.batch_size, self.pomo_size, -1)
            # shape: (batch, pomo, problem+1)
            _3 = torch.full((demand_list.shape[0], demand_list.shape[1], 1), 0)
            #扩展需求列表 demand_list 
            demand_list = torch.cat((demand_list, _3), dim=2)
            gathering_index = selected[:, :, None]
            # shape: (batch, pomo, 1)
            selected_demand = demand_list.gather(dim=2, index=gathering_index).squeeze(dim=2)
            _1 = self.last_load[action1_index[:, 0], action1_index[:, 1]].clone()
            self.last_load= self.load.clone()
            # shape: (batch, pomo)
            self.load -= selected_demand
            self.load[action1_index[:, 0], action1_index[:, 1]] = _1.clone()
            self.load[self.at_the_depot] = 1  # refill loaded at the depot

            #更新访问标记
            self.visited_ninf_flag[:, :, self.problem_size+1][self.last_is_depot] = 0
            self.visited_ninf_flag[self.BATCH_IDX, self.POMO_IDX, selected] = float('-inf')
            self.visited_ninf_flag[action2_index[:, 0], action2_index[:, 1], temp_last_current_node_action2] = float(0)
            self.visited_ninf_flag[action4_index[:, 0], action4_index[:, 1], self.problem_size + 1] = float(0)
            self.visited_ninf_flag[:, :, self.problem_size+1][self.at_the_depot] = float('-inf')
            self.visited_ninf_flag[:, :, 0][~self.at_the_depot] = 0


            # 更新负无穷掩码
            self.ninf_mask = self.visited_ninf_flag.clone()
            round_error_epsilon = 0.00001
            demand_too_large = self.load[:, :, None] + round_error_epsilon < demand_list
            # shape: (batch, pomo, problem+1)
            self.ninf_mask[demand_too_large] = float('-inf')

            # 更新完成状态
            # 检查哪些智能体已经完成所有节点的访问。
            # 更新完成标记 self.finished。
            newly_finished = (self.visited_ninf_flag == float('-inf'))[:,:,:self.problem_size+1].all(dim=2)
            # shape: (batch, pomo)
            self.finished = self.finished + newly_finished
            # shape: (batch, pomo)

            #更新模式
            self.mode[action1_bool_index] = 1
            self.mode[action2_bool_index] = 2
            self.mode[action3_bool_index] = 0
            self.mode[self.finished] = 4

            # 更新完成后的掩码调整
            self.ninf_mask[:, :, 0][self.finished] = 0
            self.ninf_mask[:, :, self.problem_size+1][self.finished] = float('-inf')

            # 更新步骤状态
            self.step_state.selected_count = self.time_step
            self.step_state.load = self.load
            self.step_state.current_node = self.current_node
            self.step_state.ninf_mask = self.ninf_mask



        # returning values
        done = self.finished.all()
        if done:
            reward = -self._get_travel_distance()  # note the minus sign!
        else:
            reward = None

        return self.step_state, reward, done

    def _get_travel_distance(self):

        m1 = (self.selected_node_list==self.problem_size+1)
        m2 = (m1.roll(dims=2, shifts=-1) | m1)
        m3 = m1.roll(dims=2, shifts=1)
        m4 = ~(m2|m3)

        selected_node_list_right = self.selected_node_list.roll(dims=2, shifts=1)
        selected_node_list_right2 = self.selected_node_list.roll(dims=2, shifts=3)

        self.regret_mask_matrix = m1
        self.add_mask_matrix = (~m2)

        travel_distances = torch.zeros((self.batch_size, self.pomo_size))

        for t in range(self.selected_node_list.shape[2]):
            add1_index = (m4[:,:,t].unsqueeze(2)).nonzero()
            add3_index = (m3[:,:,t].unsqueeze(2)).nonzero()

            travel_distances[add1_index[:,0],add1_index[:,1]] = travel_distances[add1_index[:,0],add1_index[:,1]].clone()+((self.depot_node_xy[add1_index[:,0],self.selected_node_list[add1_index[:,0],add1_index[:,1],t],:]-self.depot_node_xy[add1_index[:,0],selected_node_list_right[add1_index[:,0],add1_index[:,1],t],:])**2).sum(1).sqrt()

            travel_distances[add3_index[:,0],add3_index[:,1]] = travel_distances[add3_index[:,0],add3_index[:,1]].clone()+((self.depot_node_xy[add3_index[:,0],self.selected_node_list[add3_index[:,0],add3_index[:,1],t],:]-self.depot_node_xy[add3_index[:,0],selected_node_list_right2[add3_index[:,0],add3_index[:,1],t],:])**2).sum(1).sqrt()



        return travel_distances




代码:一、def init(self, **env_params)

    def __init__(self, **env_params):

        # Const @INIT
        ####################################
        self.env_params = env_params
        self.problem_size = env_params['problem_size']  #提取问题规模
        self.pomo_size = env_params['pomo_size']        #POMO 智能体数量

        self.FLAG__use_saved_problems = False           #设置是否使用保存的问题实例
        self.saved_depot_xy = None                      #配送中心(depot)的坐标
        self.saved_node_xy = None                       #节点(客户或城市)的坐标
        self.saved_node_demand = None                   #保存节点的需求量
        self.saved_index = None                         #保存节点的索引

        # Const @Load_Problem
        ####################################
        self.batch_size = None  
        self.BATCH_IDX = None   
        self.POMO_IDX = None    
        # IDX.shape: (batch, pomo)
        self.depot_node_xy = None
        # shape: (batch, problem+1, 2)
        self.depot_node_demand = None
        # shape: (batch, problem+1)

        # Dynamic-1
        ####################################
        self.selected_count = None
        self.current_node = None
        # shape: (batch, pomo)
        self.selected_node_list = None
        # shape: (batch, pomo, 0~)

        # Dynamic-2
        ####################################
        self.at_the_depot = None
        # shape: (batch, pomo)
        self.load = None
        # shape: (batch, pomo)
        self.visited_ninf_flag = None
        # shape: (batch, pomo, problem+1)
        self.ninf_mask = None
        # shape: (batch, pomo, problem+1)
        self.finished = None
        # shape: (batch, pomo)

        # states to return
        ####################################
        self.reset_state = Reset_State()
        self.step_state = Step_State()

        # regret
        ####################################
        self.mode = None
        self.last_current_node = None
        self.last_load = None
        self.regret_count = None

        self.regret_mask_matrix = None
        self.add_mask_matrix = None

        self.time_step=0 


http://www.niftyadmin.cn/n/5863091.html

相关文章

安装Liunx(CentOS-6-x86_64)系统

一&#xff1a;下载与安装Liunx&#xff08;CentOS-7-x86_64&#xff09; 1.下载&#xff1a; CentOS-6.10-x86_64-bin-DVD1.iso 2.安装&#xff1a; 按照自己的需求来 下载的镜像文件地址 加载完成后设置 查看网络和本地ip 3.配置仓库&#xff08;用于yum下载&#xff0…

CNN 卷积神经网络【更新中】

前置基础知识 convolution operator 卷积运算 输入矩阵循环取子矩阵跟filter(kernal)按位乘后加和作为输出矩阵对应位置的值。 convolution与cross correlation 上面操作实际是cross correlation操作&#xff0c;两者之间的唯一区别是卷积操作需要在开始计算之前将卷积核进行…

异步联邦学习的动态隐私保护框架:重构边缘智能的数据安全边界

引言&#xff1a;数据隐私与模型效能的平衡之困 某跨国医疗联盟采用异步定向联邦框架后&#xff0c;在联合训练肺部CT分割模型时实现了97.3%的隐私保护率&#xff0c;同时模型性能仅下降0.8%。通过在112家医院节点部署动态差分隐私机制&#xff0c;该方案将传统联邦学习的通信…

OpenCV 4.10.0 图像处理基础入门教程

一、OpenCV基础架构与开发环境 1.1 OpenCV核心模块解析 OpenCV 4.10.0延续了模块化架构设计&#xff0c;核心模块包含&#xff1a; Core&#xff1a;提供基础数据结构&#xff08;如Mat&#xff09;和基本运算Imgcodecs&#xff1a;独立图像编解码模块Videoio&#xff1a;视…

Linux-Ansible模块进阶

文章目录 Copy和FetchFile模块 Copy和Fetch copy和fetch模块实践 copy模块需要注意的点&#xff1a;在收集日志之前需要对文件先进行改名或者备份fetch模块需要注意的点&#xff1a;复制的源文件的路径必须是文件不能是目录建议全部使用绝对路径&#xff0c;别使用相对路径确保…

如何将公钥正确添加到服务器的 authorized_keys 文件中以实现免密码 SSH 登录

1. 下载密钥文件 2. RSA 解析 将 id_ed25519 类型的私钥转换为 RSA 类型&#xff0c;要将 ED25519 私钥转换为 RSA 私钥&#xff0c;需要重新生成一个新的 RSA 密钥对。 步骤&#xff1a; 生成新的 RSA 密钥对 使用 ssh-keygen 来生成一个新的 RSA 密钥对。比如&#xff0c;执…

浅谈小程序内嵌h5分享

前言 暂停一下&#xff0c;如果你要实现小程序内嵌h5自定义内容分享给好友你会怎么搞&#x1f43d; —————————————————————————————————————— 实践 h5发送数据 export function sendMiniProgram(data) {wx.miniProgram.postMessage(…

深入理解设计模式之组合模式

深入理解设计模式之组合模式 在软件开发的世界里&#xff0c;设计模式就像是一套经过实践验证的最佳解决方案&#xff0c;帮助开发者更高效地构建软件系统。组合模式&#xff08;Composite Pattern&#xff09;作为 23 种经典设计模式中的一员&#xff0c;在处理具有 “整体 -…